Submanifolds of complex space forms and twistor space of complex 2-plane Grassmannian

Makoto Kimura(Ibaraki University)

September 9, 2016

Quaternionic Differential Geometry and related topics Ochanomizu University

• Gauss map of hypersurface in S^{n+1} ,

- Gauss map of hypersurface in S^{n+1} ,
- Gauss map of real hypersurfaces in \mathbb{CP}^n and twistor space of $\mathbb{G}_2(\mathbb{C}^{n+1})$,

- Gauss map of hypersurface in S^{n+1} ,
- Gauss map of real hypersurfaces in \mathbb{CP}^n and twistor space of $\mathbb{G}_2(\mathbb{C}^{n+1})$,
- Hopf hypersurfaces in Cℍⁿ and para-quaternionic Kähler geometry of G_{1,1}(Cⁿ⁺¹₁),

- Gauss map of hypersurface in S^{n+1} ,
- Gauss map of real hypersurfaces in \mathbb{CP}^n and twistor space of $\mathbb{G}_2(\mathbb{C}^{n+1})$,
- Hopf hypersurfaces in CHⁿ and para-quaternionic Kähler geometry of G_{1,1}(Cⁿ⁺¹₁),
- Ruled Lagrangian submanifolds in \mathbb{CP}^n .

• For an immersion $x: M^n \to S^{n+1} \subset \mathbb{R}^{n+2}$,

- For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+2}$,
- let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vec tor at $p \in M$, and

- For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+2}$,
- let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vec tor at $p \in M$, and
- let N_p be a unit normal vector of oriented hypersurface $M \subset S^{n+1}$ at $p \in M$.

- For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+2}$,
- let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vec tor at $p \in M$, and
- let N_p be a unit normal vector of oriented hypersurface $M \subset S^{n+1}$ at $p \in M$.
- ullet Then the Gauss map $\gamma: M o \widetilde{G}_2(\mathbb{R}^{n+2}) \cong Q^n$ is defined by

- For an immersion $x: M^n o S^{n+1} \subset \mathbb{R}^{n+2}$,
- let $x(p) \in S^{n+1} \subset \mathbb{R}^{n+2}$ be the position vec tor at $p \in M$, and
- let N_p be a unit normal vector of oriented hypersurface $M \subset S^{n+1}$ at $p \in M$.
- Then the Gauss map $\gamma: M o \widetilde{G}_2(\mathbb{R}^{n+2}) \cong Q^n$ is defined by
- $\gamma(p) = x(p) \wedge N_p$ (B. Palmer, 1997).

• Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n .

- Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n .
- Moreover, if $M^n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.

- Then the image of the Gauss map $\gamma(M)$ is a Lagrangian submanifold of complex quadric Q^n .
- Moreover, if $M^n \subset S^{n+1}$ is either isoparametric or austere, then $\gamma(M) \subset Q^n$ is a minimal Lagrangian submanifold.
- Also for parallel hypersurface $M_r := \cos rx + \sin rN$ $(r \in \mathbb{R})$ of M, the Gauss image is not changed: $\gamma(M) = \gamma(M_r)$.

• Conversely, let $\gamma: M^n \to Q^n$ be a Lagrangian immersion.

- Conversely, let $\gamma: M^n \to Q^n$ be a Lagrangian immersion.
- Then we have a lift $\tilde{\gamma}: M^n \to V_2(\mathbb{R}^{n+2})$ to real Stiefel manifold, and with respect to a contact structure of $V_2(\mathbb{R}^{n+1})$, $\tilde{\gamma}$ is a Legendrian immersion.

- Conversely, let $\gamma: M^n \to Q^n$ be a Lagrangian immersion.
- Then we have a lift $\tilde{\gamma}: M^n \to V_2(\mathbb{R}^{n+2})$ to real Stiefel manifold, and with respect to a contact structure of $V_2(\mathbb{R}^{n+1})$, $\tilde{\gamma}$ is a Legendrian immersion.
- If we denote $\mathrm{pr}_1:V_2(\mathbb{R}^{n+2}) o S^{n+1}$ the projection to unit sphere of taking first component, then

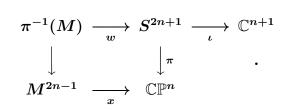
- Conversely, let $\gamma: M^n \to Q^n$ be a Lagrangian immersion.
- Then we have a lift $\tilde{\gamma}: M^n \to V_2(\mathbb{R}^{n+2})$ to real Stiefel manifold, and with respect to a contact structure of $V_2(\mathbb{R}^{n+1})$, $\tilde{\gamma}$ is a Legendrian immersion.
- If we denote $\mathrm{pr}_1: V_2(\mathbb{R}^{n+2}) o S^{n+1}$ the projection to unit sphere of taking first component, then
- the composition $\mathrm{pr}_1 \circ \tilde{\gamma}: M^n \to S^{n+1}$ gives original hypersurface.

- Conversely, let $\gamma: M^n \to Q^n$ be a Lagrangian immersion.
- Then we have a lift $\tilde{\gamma}: M^n \to V_2(\mathbb{R}^{n+2})$ to real Stiefel manifold, and with respect to a contact structure of $V_2(\mathbb{R}^{n+1})$, $\tilde{\gamma}$ is a Legendrian immersion.
- If we denote $\mathrm{pr}_1: V_2(\mathbb{R}^{n+2}) o S^{n+1}$ the projection to unit sphere of taking first component, then
- the composition $\mathrm{pr}_1 \circ \tilde{\gamma}: M^n \to S^{n+1}$ gives original hypersurface.
- Anciaux (2014) generalized the result to hypersurfaces in hyperbolic space and indefinite real space forms.

• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:

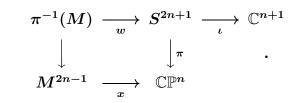
• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:

۲



• For a real hypersurface M^{2n-1} in \mathbb{CP}^n , we consider the following diagram:

۲



• For $p \in M$, take a point $z_p \in \pi^{-1}(x(p)) \subset \pi^{-1}(M)$ and let N'_p be a holizontal lift of unit normal of $M \subset \mathbb{CP}^n$ at z_p .

• If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}} \{z_p, N'_p\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.

- If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}} \{z_p, N'_p\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.
- We call γ as the Gauss map of real hypersurface M in $\mathbb{CP}^n.$

- If we put $\gamma(p) = \operatorname{span}_{\mathbb{C}} \{z_p, N'_p\}$, then the map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+1})$ is well-defined.
- We call γ as the Gauss map of real hypersurface M in $\mathbb{CP}^n.$
- Note that for parallel hypersurface $M_r := \pi(\cos r z_p + \sin r N'_p)$ of M,image of the Gauss map $\gamma: M^{2n-1} \to \mathbb{CP}^n$ is not changed: $\gamma(M) = \gamma(M_r)$.

• For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n, J) and a unit normal vector N,

- For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n, J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.

- For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n, J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.
- And when ξ is an eigenvector of the shape operator A of M, i.e., $A\xi = \mu \xi$, we call M a Hopf hypersurface in \widetilde{M} .

- For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n, J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.
- And when ξ is an eigenvector of the shape operator A of M, i.e., $A\xi = \mu \xi$, we call M a Hopf hypersurface in \widetilde{M} .
- If \widetilde{M} is a non-flat complex space form $\widetilde{M}(c)$ $(c \neq 0)$, then μ is constant on M (Y. Maeda and Ki-Suh) and

- For a real hypersurface M^{2n-1} in Kähler manifold (\widetilde{M}^n, J) and a unit normal vector N,
- a vector $\xi := -JN$ tangent to M is called the structure vector of M.
- And when ξ is an eigenvector of the shape operator A of M, i.e., $A\xi = \mu \xi$, we call M a Hopf hypersurface in \widetilde{M} .
- If \widetilde{M} is a non-flat complex space form $\widetilde{M}(c)$ $(c \neq 0)$, then μ is constant on M (Y. Maeda and Ki-Suh) and
- each integral curve of $\boldsymbol{\xi}$ is a circle in $\mathbb{CP}^1 \subset \mathbb{CP}^n$ (resp. $\mathbb{CH}^1 \subset \mathbb{CH}^n$) when c > 0 (resp. c < 0).

A real hypersurface which lies on a tube over a complex submanifold Σ in CPⁿ is Hopf.

- A real hypersurface which lies on a tube over a complex submanifold Σ in CPⁿ is Hopf.
- Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi = \mu\xi$, and for $r \in (0, \pi/2)$ with $\mu = 2 \cot 2r$, $r \in (0, \pi/2)$, if rank of the focal map $\phi_r : M \to \mathbb{CP}^n$ is constant, then

- A real hypersurface which lies on a tube over a complex submanifold Σ in CPⁿ is Hopf.
- Conversely, if a Hopf hypersurface M in $\mathbb{CP}^n(4)$ satisfies $A\xi = \mu\xi$, and for $r \in (0, \pi/2)$ with $\mu = 2 \cot 2r$, $r \in (0, \pi/2)$, if rank of the focal map $\phi_r : M \to \mathbb{CP}^n$ is constant, then
- $\phi_r(M)$ is a complex submanifold of $\mathbb{CP}^n(4)$ and M lies on a tube over $\phi_r(M)$. (Cecil-Ryan, 1982).

 After that, Borisenko(2001) obtained some results concerning Hopf hypersurfaces in CPⁿ without assumption of rank about the focal map.

- After that, Borisenko(2001) obtained some results concerning Hopf hypersurfaces in CPⁿ without assumption of rank about the focal map.
- For example, he showed that compact embedded Hopf hypersurface in CPⁿ lies on a tube over an algebraic variety.

- After that, Borisenko(2001) obtained some results concerning Hopf hypersurfaces in CPⁿ without assumption of rank about the focal map.
- For example, he showed that compact embedded Hopf hypersurface in CPⁿ lies on a tube over an algebraic variety.
- In this talk, we will give a characterization of Hopf hypersurface M in \mathbb{CP}^n by using the Gauss map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+2}).$

- After that, Borisenko(2001) obtained some results concerning Hopf hypersurfaces in CPⁿ without assumption of rank about the focal map.
- For example, he showed that compact embedded Hopf hypersurface in \mathbb{CP}^n lies on a tube over an algebraic variety.
- In this talk, we will give a characterization of Hopf hypersurface M in \mathbb{CP}^n by using the Gauss map $\gamma: M \to \mathbb{G}_2(\mathbb{C}^{n+2})$.
- We note that

- Here, \tilde{g} is a Riemannian metric of M, Q is a subbundle of End $T\widetilde{M}$ with rank 3, satisfying:

- Here, \tilde{g} is a Riemannian metric of M, Q is a subbundle of End $T\widetilde{M}$ with rank 3, satisfying:
- For each $p \in M$, there exists a neighborhood $U \ni p$, such that there exists local frame field $\{\tilde{I}_1, \tilde{I}_2, \tilde{I}_3\}$ of Q.

Quaternionic Kähler manifold

$$egin{array}{lll} ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, & ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, & ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2. \end{array}$$

Quaternionic Kähler manifold

$$egin{array}{lll} ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, & ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, & ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2. \end{array}$$

• For each
$$L \in Q_p$$
, \tilde{g} is invariant, i.e.,
 $\tilde{g}_p(LX,Y) + \tilde{g}_p(X,LY) = 0$ for $X,Y \in T_p\widetilde{M}$,
 $p \in \widetilde{M}$.

Quaternionic Kähler manifold

$$egin{array}{lll} ilde{I}_1^2 = ilde{I}_2^2 = ilde{I}_3^2 = -1, & ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, & ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = ilde{I}_2. \end{array}$$

- For each $L \in Q_p$, \tilde{g} is invariant, i.e., $\tilde{g}_p(LX, Y) + \tilde{g}_p(X, LY) = 0$ for $X, Y \in T_p\widetilde{M}$, $p \in \widetilde{M}$.
- Vector bundle Q is parallel with respect to the Levi-Civita connection of ğ at End TM.

• A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

• A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

• (1)
$$ilde{I}^2 = -1$$
, and (2) $ilde{I}TM = TM$.

• A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

• (1)
$$ilde{I}^2 = -1$$
, and (2) $ilde{I}TM = TM$.

ullet if we write the almost complex structure on M which is induced by \tilde{I} as I, then

• A submanifold M^{2m} in quaternionic Kähler manifold \widetilde{M} is called almost Hermitian submanifold, if there exists a section \tilde{I} of vector bundle $Q|_M$ over M such that

• (1)
$$ilde{I}^2 = -1$$
, and (2) $ilde{I}TM = TM$.

- ullet if we write the almost complex structure on M which is induced by \tilde{I} as I, then
- with respect to the induced metric, (M, I) is an almost Hermitian manifold.

Totally complex submanifold of Q.K. manifold

• In particular, when almost Hermitian submanifold (M, \overline{g}, I) is Kähler, we call M a Kähler submanifold of quaternionic Kähler manifold \widetilde{M} .

Totally complex submanifold of Q.K. manifold

- In particular, when almost Hermitian submanifold

 (M, g, I) is Kähler, we call M a Kähler submanifold of
 quaternionic Kähler manifold M
- Similarly, an almost Hermitian submanifold (M, \bar{g}, I) is called totally complex submanifold if at each point $p \in M$, with respect to $\tilde{L} \in Q_p$ which anti-commute with \tilde{I}_p , $\tilde{L}T_pM \perp T_pM$ hold.

Totally complex submanifold of Q.K. manifold

- In particular, when almost Hermitian submanifold

 (M, g, I) is Kähler, we call M a Kähler submanifold of
 quaternionic Kähler manifold M
- Similarly, an almost Hermitian submanifold (M, \bar{g}, I) is called totally complex submanifold if at each point $p \in M$, with respect to $\tilde{L} \in Q_p$ which anti-commute with \tilde{I}_p , $\tilde{L}T_pM \perp T_pM$ hold.
- In quaternionic K\u00e4hler manifold, a submanifold is totally complex if and only if it is K\u00e4hler (Alekseevsky-Marchiafava, 2001).

 Theorem 1. (K., Diff. Geom. Appl. 2014) Let M²ⁿ⁻¹ be a real hypersurface in complex projective space CPⁿ, and let γ : M → G₂(Cⁿ⁺¹) be the Gauss map.

- Theorem 1. (K., Diff. Geom. Appl. 2014) Let M²ⁿ⁻¹ be a real hypersurface in complex projective space CPⁿ, and let γ : M → G₂(Cⁿ⁺¹) be the Gauss map.
- If M is not Hopf, then the Gauss map γ is an immersion.

- Theorem 1. (K., Diff. Geom. Appl. 2014) Let M²ⁿ⁻¹ be a real hypersurface in complex projective space CPⁿ, and let γ : M → G₂(Cⁿ⁺¹) be the Gauss map.
- If M is not Hopf, then the Gauss map γ is an immersion.
- If M is a Hopf hypersurface, then the image $\gamma(M)$ is a half-dimensional totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$.

- Theorem 1. (K., Diff. Geom. Appl. 2014) Let M²ⁿ⁻¹ be a real hypersurface in complex projective space CPⁿ, and let γ : M → G₂(Cⁿ⁺¹) be the Gauss map.
- If M is not Hopf, then the Gauss map γ is an immersion.
- If M is a Hopf hypersurface, then the image $\gamma(M)$ is a half-dimensional totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- And a Hopf hypersurface M in CPⁿ is a total space of a circle bundle over a Kähler manifold such that the fibration is nothing but the Gauss map γ : M → γ(M).

• Let \widetilde{M} be a quaternionic Kähler manifold.

- Let \overline{M} be a quaternionic Kähler manifold.
- Then the unit sphere subbundle $\mathcal{Z} = \{ \tilde{I} \in Q | \ \tilde{I}^2 = -1 \}$ of Q is called the twistor space of \widetilde{M} .

- Let \overline{M} be a quaternionic Kähler manifold.
- Then the unit sphere subbundle $\mathcal{Z} = \{ \tilde{I} \in Q | \ \tilde{I}^2 = -1 \}$ of Q is called the twistor space of \widetilde{M} .
- If \tilde{M} has non-zero Ricci curvature, then \mathcal{Z} admits a complex contact structure.

- Let \widetilde{M} be a quaternionic Kähler manifold.
- Then the unit sphere subbundle $\mathcal{Z} = \{ \tilde{I} \in Q | \ \tilde{I}^2 = -1 \}$ of Q is called the twistor space of \widetilde{M} .
- If \widetilde{M} has non-zero Ricci curvature, then \mathcal{Z} admits a complex contact structure.
- If \overline{M} has positive Ricci curvature, then \mathcal{Z} admits an Einstein-Kähler metric with positive Ricci curvture,

- Let \overline{M} be a quaternionic Kähler manifold.
- Then the unit sphere subbundle $\mathcal{Z} = \{ \tilde{I} \in Q | \ \tilde{I}^2 = -1 \}$ of Q is called the twistor space of \widetilde{M} .
- If \tilde{M} has non-zero Ricci curvature, then \mathcal{Z} admits a complex contact structure.
- If \overline{M} has positive Ricci curvature, then \mathcal{Z} admits an Einstein-Kähler metric with positive Ricci curvture,
- such that the twistor fibration $\pi : \mathbb{Z} \to \widetilde{M}$ is a Riemannian submersion with totally geodesic fibers.

Twistor space of $G_2(\mathbb{C}^{n+1})$

Recently K. Tsukada investigated twistor space Z of complex 2-plane Grassmannian G₂(Cⁿ⁺¹) (Diff. Geom. Appl. 2016),

- Recently K. Tsukada investigated twistor space Z of complex 2-plane Grassmannian G₂(Cⁿ⁺¹) (Diff. Geom. Appl. 2016),
- and he showed that \mathcal{Z} is identified with the projective cotangent bundle $P(T^*\mathbb{CP}^n)$ of a complex projective space \mathbb{CP}^n .

- Recently K. Tsukada investigated twistor space Z of complex 2-plane Grassmannian C₂(Cⁿ⁺¹) (Diff. Geom. Appl. 2016),
- and he showed that \mathcal{Z} is identified with the projective cotangent bundle $P(T^*\mathbb{CP}^n)$ of a complex projective space \mathbb{CP}^n .
- As a homogeneous space, \mathcal{Z} is expressed as $U(n+1)/U(n-1) \times U(1) \times U(1)$.

• Let $V_2(\mathbb{C}^{n+1})$ be the complex Stiefel manifold of orthonormal 2-vectors (u_1, u_2) in \mathbb{C}^{n+1} , and

- Let $V_2(\mathbb{C}^{n+1})$ be the complex Stiefel manifold of orthonormal 2-vectors (u_1, u_2) in \mathbb{C}^{n+1} , and
- let $\pi^G: V_2(\mathbb{C}^{n+1}) \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the projection defined by $(u_1, u_2) \mapsto \mathbb{C}u_1 \oplus \mathbb{C}u_2$.

- Let $V_2(\mathbb{C}^{n+1})$ be the complex Stiefel manifold of orthonormal 2-vectors (u_1, u_2) in \mathbb{C}^{n+1} , and
- let $\pi^G: V_2(\mathbb{C}^{n+1}) \to \mathbb{G}_2(\mathbb{C}^{n+1})$ be the projection defined by $(u_1, u_2) \mapsto \mathbb{C}u_1 \oplus \mathbb{C}u_2$.
- Then tangent space $T_{\pi^G(u_1,u_2)}(\mathbb{G}_2(\mathbb{C}^{n+1}))$ is identified with $\{u_1,u_2\}^{\perp} \times \{u_1,u_2\}^{\perp}$ in $\mathbb{C}^{n+1} \times \mathbb{C}^{n+1}$ through π^G_* .

• With respect to $(u_1, u_2) \in V_2(\mathbb{C}^{n+1})$, a basis I_1, I_2 and I_3 of Q.K. structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is given by: for $(x_1, x_2) \in \{u_1, u_2\}^{\perp} \times \{u_1, u_2\}^{\perp}$,

With respect to (u₁, u₂) ∈ V₂(ℂⁿ⁺¹), a basis I₁, I₂ and I₃ of Q.K. structure of ℂ₂(ℂⁿ⁺¹) is given by: for (x₁, x₂) ∈ {u₁, u₂}[⊥] × {u₁, u₂}[⊥],
I₁: (x₁, x₂) ↦ (x₁, x₂) (0 -1) 1 0 = (x₂, -x₁),

With respect to (u₁, u₂) ∈ V₂(ℂⁿ⁺¹), a basis I₁, I₂ and I₃ of Q.K. structure of ℂ₂(ℂⁿ⁺¹) is given by: for (x₁, x₂) ∈ {u₁, u₂}[⊥] × {u₁, u₂}[⊥],
I₁: (x₁, x₂) ↦ (x₁, x₂) (0 -1)(1 0) = (x₂, -x₁),
I₂: (x₁, x₂) ↦ (x₁, x₂) (i 0)(0 -i) = (ix₁, -ix₂),

• With respect to $(u_1, u_2) \in V_2(\mathbb{C}^{n+1})$, a basis I_1, I_2 and I_3 of Q.K. structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is given by: for $(x_1, x_2) \in \{u_1, u_2\}^{\perp} \times \{u_1, u_2\}^{\perp}$ • $I_1: (x_1, x_2) \mapsto (x_1, x_2) egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix} = (x_2, -x_1),$ • $I_2: (x_1,x_2)\mapsto (x_1,x_2)inom{i}{0} = (ix_1,-ix_2),$ • $I_3: (x_1,x_2)\mapsto (x_1,x_2)egin{pmatrix} 0&i\ i&0 \end{pmatrix}=(ix_2,ix_1).$

• Hence fiber of the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is identified with the unit sphere S in a Lie algebra $\mathfrak{su}(2)$, and

- Hence fiber of the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is identified with the unit sphere S in a Lie algebra $\mathfrak{su}(2)$, and
- for each corresponding 1-parameter subgroup $\exp(sX)$ $(X \in S)$, orbits in the complex projective line $[u_1, u_2] = \mathbb{CP}^1$ in \mathbb{CP}^n are concentric circles.

- Hence fiber of the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is identified with the unit sphere S in a Lie algebra $\mathfrak{su}(2)$, and
- for each corresponding 1-parameter subgroup $\exp(sX)$ $(X \in S)$, orbits in the complex projective line $[u_1, u_2] = \mathbb{CP}^1$ in \mathbb{CP}^n are concentric circles.
- From this, we may identify the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ and the space of concentric circles in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, and

- Hence fiber of the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ is identified with the unit sphere S in a Lie algebra $\mathfrak{su}(2)$, and
- for each corresponding 1-parameter subgroup $\exp(sX)$ $(X \in S)$, orbits in the complex projective line $[u_1, u_2] = \mathbb{CP}^1$ in \mathbb{CP}^n are concentric circles.
- From this, we may identify the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$ and the space of concentric circles in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, and
- also Z is identified with with the space of oriented geodesics in CP¹ ⊂ CPⁿ.

Another 'Gauss' map of Hopf hypersurface to \mathcal{Z}

• Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .

Another 'Gauss' map of Hopf hypersurface to ${\mathcal Z}$

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .
- Then, for each point p in M, if we denote ψ(p) the (maximal) integral curve of ξ through p, which is a circle in CP¹ ⊂ CPⁿ, then

Another 'Gauss' map of Hopf hypersurface to $\mathcal Z$

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .
- Then, for each point p in M, if we denote $\psi(p)$ the (maximal) integral curve of ξ through p, which is a circle in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, then
- we have a map ψ from M to the twistor space $\mathcal Z$ of $\mathbb G_2(\mathbb C^{n+1}).$

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .
- Then, for each point p in M, if we denote $\psi(p)$ the (maximal) integral curve of ξ through p, which is a circle in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, then
- we have a map ψ from M to the twistor space $\mathcal Z$ of $\mathbb G_2(\mathbb C^{n+1}).$
- We see that the image $\psi(M)$ is a complex submanifold of \mathcal{Z} and horizontal with respect to the twistor fibration $\pi: \mathcal{Z} \to \mathbb{G}_2(\mathbb{C}^{n+1}).$

- Let M^{2n-1} be a Hopf hypersurface in \mathbb{CP}^n .
- Then, for each point p in M, if we denote $\psi(p)$ the (maximal) integral curve of ξ through p, which is a circle in $\mathbb{CP}^1 \subset \mathbb{CP}^n$, then
- we have a map ψ from M to the twistor space $\mathcal Z$ of $\mathbb G_2(\mathbb C^{n+1}).$
- We see that the image ψ(M) is a complex submanifold of Z and horizontal with respect to the twistor fibration π : Z → C₂(Cⁿ⁺¹).
- Also $\pi(\psi(M))$ is a totally complex submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1}).$

 Let φ : Σⁿ⁻¹ → G₂(Cⁿ⁺¹) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.

- Let φ : Σⁿ⁻¹ → G₂(Cⁿ⁺¹) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,

- Let φ : Σⁿ⁻¹ → G₂(Cⁿ⁺¹) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,
- then we have a submanifold $\tilde{I}(\Sigma)$ of the twistor space $\mathcal{Z} = \{\tilde{I} \in Q | \ \tilde{I}^2 = -1\}$ of $\mathbb{G}_2(\mathbb{C}^{n+1})$ (natural lift).

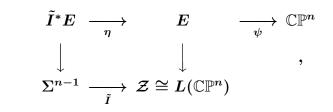
- Let φ : Σⁿ⁻¹ → G₂(Cⁿ⁺¹) be a totally complex immersion from a (half dimensional) Kähler manifold to complex 2-plane Grassmann manifold.
- Then, for each point p in Σ , if we assign $ilde{I}_p \in Q_{arphi(p)}$,
- then we have a submanifold $\tilde{I}(\Sigma)$ of the twistor space $\mathcal{Z} = \{ \tilde{I} \in Q | \ \tilde{I}^2 = -1 \}$ of $\mathbb{G}_2(\mathbb{C}^{n+1})$ (natural lift).
- Since Σ is a totally complex submanifold of G₂(Cⁿ⁺¹), *Ĩ*(Σ) is a Legendrian submanifold of the twistor space Z with respect to a complex contact structure (Alekseevsky-Marchiafava, 2004).

• Let E be an S^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ such that each fiber is identified with oriented geodesic in \mathbb{CP}^n .

- Let E be an S^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ such that each fiber is identified with oriented geodesic in \mathbb{CP}^n .
- With respect to the following diagram:

- Let E be an S^1 -bundle over $\mathcal{Z} \cong L(\mathbb{CP}^n)$ such that each fiber is identified with oriented geodesic in \mathbb{CP}^n .
- With respect to the following diagram:

۲



• The map $\Phi := \psi \circ \eta : \tilde{I}^*E \to \mathbb{CP}^n$ gives Hopf hypersurface with $A\xi = 0$ (on open subset of regular points of $M = \tilde{I}^*E$), and

- The map $\Phi := \psi \circ \eta : \tilde{I}^*E \to \mathbb{CP}^n$ gives Hopf hypersurface with $A\xi = 0$ (on open subset of regular points of $M = \tilde{I}^*E$), and
- its parallel hypersurface $\phi_r(\tilde{I}^*E)$ gives Hopf hypersurface with $A\xi = 2 \tan 2r\xi$ (on open subset of regular points of $M = \tilde{I}^*E$).

Remarks

Recently K. Tsukada proved that conormal bundle of any complex submanifold in CPⁿ is realized as a half dimensional totally complex submanifold in G₂(Cⁿ⁺¹).

Remarks

- Recently K. Tsukada proved that conormal bundle of any complex submanifold in CPⁿ is realized as a half dimensional totally complex submanifold in G₂(Cⁿ⁺¹).
- For real hypersurfaces in complex hyperbolic space \mathbb{CH}^n , we define Gauss map $\gamma: M \to \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and

Remarks

- Recently K. Tsukada proved that conormal bundle of any complex submanifold in CPⁿ is realized as a half dimensional totally complex submanifold in G₂(Cⁿ⁺¹).
- For real hypersurfaces in complex hyperbolic space \mathbb{CH}^n , we define Gauss map $\gamma: M \to \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and
- we obtain similar results for Hopf hypersurfaces in CHⁿ by using para-quaternionic Kähler structure (J.T. Cho and M.K., Topol. Appl. 2015).

ullet An indefinite metric $\langle \;,\;
angle$ of index 2 on \mathbb{C}_1^{n+1} is given by

• An indefinite metric $\langle \;,\;
angle$ of index 2 on \mathbb{C}_1^{n+1} is given by

$$egin{aligned} &\langle z,w
angle = ext{Re}\left(-z_0ar{w}_0+\sum_{k=1}^n z_kar{w}_k
ight),\ &z=(z_0,\ldots,z_n),\,w=(w_0,\ldots,w_n)\in\mathbb{C}_1^{n+1}. \end{aligned}$$

۲

• An indefinite metric $\langle \;,\;
angle$ of index 2 on \mathbb{C}_1^{n+1} is given by

$$\langle z,w
angle = {
m Re}\left(-z_0ar w_0+\sum_{k=1}^n z_kar w_k
ight),$$

$$z=(z_0,\ldots,z_n)$$
, $w=(w_0,\ldots,w_n)\in\mathbb{C}_1^{n+1}$

• The anti de Sitter space is defined by

٢

$$H_1^{2n+1}=\{z\in\mathbb{C}_1^{n+1}|\;\langle z,z
angle=-1\}.$$

• An indefinite metric $\langle \;,\;
angle$ of index 2 on \mathbb{C}^{n+1}_1 is given by

$$\langle z,w
angle = {
m Re}\left(-z_0ar w_0+\sum_{k=1}^n z_kar w_k
ight),$$

$$z=(z_0,\ldots,z_n)$$
, $w=(w_0,\ldots,w_n)\in\mathbb{C}_1^{n+1}$

• The anti de Sitter space is defined by

٢

$$H_1^{2n+1}=\{z\in\mathbb{C}_1^{n+1}|~\langle z,z
angle=-1\}.$$

• H_1^{2n+1} is the principal fiber bundle over \mathbb{CH}^n with the structure group S^1 and the fibration $\pi: H_1^{2n+1} \to \mathbb{CH}^n$.

Gauss map of real hypersurface in \mathbb{CH}^n

• Let $\Phi: M^{2n-1} \to \mathbb{CH}^n$ be an immersion and let N_p be a unit normal vector of M at $p \in M$.

Gauss map of real hypersurface in \mathbb{CH}^n

• Let $\Phi: M^{2n-1} \to \mathbb{CH}^n$ be an immersion and let N_p be a unit normal vector of M at $p \in M$.

• For each
$$p \in M^{2n-1}$$
, we put $G(p) = \mathbb{C}\pi^{-1}(\Phi(p)) \oplus \mathbb{C}N_p.$

Gauss map of real hypersurface in \mathbb{CH}^n

- Let $\Phi: M^{2n-1} \to \mathbb{CH}^n$ be an immersion and let N_p be a unit normal vector of M at $p \in M$.
- For each $p\in M^{2n-1}$, we put $G(p)=\mathbb{C}\pi^{-1}(\Phi(p))\oplus\mathbb{C}N_p.$
- Then we have a Gauss map $G: M^{2n-1} \to G_{1,1}(\mathbb{C}_1^{n+1})$ of real hypersurface M in \mathbb{CH}^n .

• Montiel (1995) proved that:

- Montiel (1995) proved that:
- Any real hypersurface which lies on a tube over a complex submanifold in $\mathbb{CH}^n(-4)$ is Hopf with $|\mu| > 2$. and

- Montiel (1995) proved that:
- Any real hypersurface which lies on a tube over a complex submanifold in $\mathbb{CH}^n(-4)$ is Hopf with $|\mu| > 2$. and
- Hopf hypersurface M with Hopf curvature μ with $|\mu| > 2$ in complex hyperbolic space $\mathbb{CH}^n(-4)$

- Montiel (1995) proved that:
- Any real hypersurface which lies on a tube over a complex submanifold in $\mathbb{CH}^n(-4)$ is Hopf with $|\mu| > 2$. and
- Hopf hypersurface M with Hopf curvature μ with $|\mu| > 2$ in complex hyperbolic space $\mathbb{CH}^n(-4)$
- ullet lies on a tube of radius r over a complex submanifold in $\mathbb{C}\mathbb{H}^n$,

- Montiel (1995) proved that:
- Any real hypersurface which lies on a tube over a complex submanifold in $\mathbb{CH}^n(-4)$ is Hopf with $|\mu| > 2$. and
- Hopf hypersurface M with Hopf curvature μ with $|\mu| > 2$ in complex hyperbolic space $\mathbb{CH}^n(-4)$
- ullet lies on a tube of radius r over a complex submanifold in $\mathbb{C}\mathbb{H}^n$,
- provided that the rank of the focal map is constant as Cecil-Ryan's Theorem.

• On the other hand, Ivey (2011) proved that

- On the other hand, Ivey (2011) proved that
- a Hopf hypersurface with $|\mu| < 2$ in $\mathbb{C}\mathbb{H}^n$ may be constructed from

- On the other hand, Ivey (2011) proved that
- a Hopf hypersurface with $|\mu| < 2$ in $\mathbb{C}\mathbb{H}^n$ may be constructed from
- an arbitrary pair of Legendrian submanifolds in S^{2n-1} .

- On the other hand, Ivey (2011) proved that
- a Hopf hypersurface with $|\mu| < 2$ in $\mathbb{C}\mathbb{H}^n$ may be constructed from
- an arbitrary pair of Legendrian submanifolds in S^{2n-1} .
- Structure theorem for Hopf hypersurfaces with $\mu=\pm 2$ was not known.

Hopf hypersurfaces in $\mathbb{CH}^n(-4)$

• Let M^{2n-1} in $\mathbb{CH}^n = \mathbb{CH}^n(-4)$ be a Hopf hypersurface with Hopf curvature μ .

Hopf hypersurfaces in $\mathbb{CH}^n(-4)$

- Let M^{2n-1} in $\mathbb{CH}^n = \mathbb{CH}^n(-4)$ be a Hopf hypersurface with Hopf curvature μ .
- Each integral curve of ξ is a geodesic circle of radius r > 0, lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| > 2$ with $\mu = 2 \coth 2r$,

Hopf hypersurfaces in $\mathbb{CH}^n(-4)$

- Let M^{2n-1} in $\mathbb{CH}^n = \mathbb{CH}^n(-4)$ be a Hopf hypersurface with Hopf curvature μ .
- Each integral curve of ξ is a geodesic circle of radius r > 0, lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| > 2$ with $\mu = 2 \coth 2r$,
- Each integral curve of ξ is an equidistance curve of distance $r \ge 0$ from a geodesic, lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| < 2$ with $\mu = 2 \tanh 2r$,

Hopf hypersurfaces in $\mathbb{CH}^n(-4)$

- Let M^{2n-1} in $\mathbb{CH}^n = \mathbb{CH}^n(-4)$ be a Hopf hypersurface with Hopf curvature μ .
- Each integral curve of ξ is a geodesic circle of radius r > 0, lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| > 2$ with $\mu = 2 \coth 2r$,
- Each integral curve of ξ is an equidistance curve of distance $r \ge 0$ from a geodesic, lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| < 2$ with $\mu = 2 \tanh 2r$,
- Each integral curve of ξ is a horocycle lies in $\mathbb{CH}^1 \subset \mathbb{CH}^n$, provided $|\mu| = 2$.

Split-quaternions

•
$$\widetilde{\mathbb{H}} = C(2,0) = C(1,1)$$
, Split-quaternions (or
coquaternions, para-quaternions):
 $q = q_0 + iq_1 + jq_2 + kq_3$, $i^2 = -1$, $j^2 = k^2 = 1$,
 $ij = -ji = -k$, $jk = -kj = i$, $ki = -ik = -j$,
 $|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2$, \exists zero divisors,

Split-quaternions

•
$$\widetilde{\mathbb{H}} = C(2,0) = C(1,1)$$
, Split-quaternions (or
coquaternions, para-quaternions):
 $q = q_0 + iq_1 + jq_2 + kq_3$, $i^2 = -1$, $j^2 = k^2 = 1$,
 $ij = -ji = -k$, $jk = -kj = i$, $ki = -ik = -j$,
 $|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2$, \exists zero divisors,

• http://en.wikipedia.org/wiki/Split-quaternion

Split-quaternions

•
$$\widetilde{\mathbb{H}} = C(2,0) = C(1,1)$$
, Split-quaternions (or
coquaternions, para-quaternions):
 $q = q_0 + iq_1 + jq_2 + kq_3$, $i^2 = -1$, $j^2 = k^2 = 1$,
 $ij = -ji = -k$, $jk = -kj = i$, $ki = -ik = -j$,
 $|q|^2 = q_0^2 + q_1^2 - q_2^2 - q_3^2$, \exists zero divisors,

- http://en.wikipedia.org/wiki/Split-quaternion
- Introduced by James Cockle in 1849.

Para-quaternionic structure

• $\{I_1, I_2, I_3\}$, $I_1^2 = -1$, $I_2^2 = I_3^2 = 1$, $I_1I_2 = -I_2I_1 = -I_3$, $I_2I_3 = -I_3I_2 = I_1$, $I_3I_1 = -I_1I_3 = -I_2$ gives para-quaternionic structure,

Para-quaternionic structure

•
$$\{I_1, I_2, I_3\}, I_1^2 = -1, I_2^2 = I_3^2 = 1, I_1I_2 = -I_2I_1 = -I_3, I_2I_3 = -I_3I_2 = I_1, I_3I_1 = -I_1I_3 = -I_2$$
 gives para-quaternionic structure,
• $\tilde{V} = \{aI_1 + bI_2 + cI_3 | a, b, c \in \mathbb{R}\} \cong \mathfrak{su}(1, 1) \cong \mathbb{R}^3_1, and$

Para-quaternionic structure

- $\{I_1, I_2, I_3\}, I_1^2 = -1, I_2^2 = I_3^2 = 1, I_1 I_2 = -I_2 I_1 = -I_3, I_2 I_3 = -I_3 I_2 = I_1, I_3 I_1 = -I_1 I_3 = -I_2$ gives para-quaternionic structure,
- $ilde{V} = \{ aI_1 + bI_2 + cI_3 | \ a, b, c \in \mathbb{R} \} \cong \mathfrak{su}(1,1) \cong \mathbb{R}^3_1,$ and
- $Q_+ = \{I \in \tilde{V} | I^2 = 1\} \cong S_1^2$: de-Sitter space, $Q_- = \{I \in \tilde{V} | I^2 = -1\} \cong H^2$: hyperbolic space, $Q_0 = \{I \in \tilde{V} | I^2 = 0, I \neq 0\} \cong$ lightcone.

• Let $(\widetilde{M}^{4m}, \tilde{g}, \tilde{Q})$ be a para-quaternionic Kähler manifold with the para-quaternionic Kähler structure (\tilde{g}, \tilde{Q}) ,

- Let $(\widetilde{M}^{4m}, \tilde{g}, \tilde{Q})$ be a para-quaternionic Kähler manifold with the para-quaternionic Kähler structure (\tilde{g}, \tilde{Q}) ,
- that is, \tilde{g} is a neutral metric on \widetilde{M} and \tilde{Q} is a rank 3 subbundle of $\operatorname{End} T\widetilde{M}$ which satisfies the following conditions:

- Let $(\widetilde{M}^{4m}, \tilde{g}, \tilde{Q})$ be a para-quaternionic Kähler manifold with the para-quaternionic Kähler structure (\tilde{g}, \tilde{Q}) ,
- that is, \tilde{g} is a neutral metric on \widetilde{M} and \tilde{Q} is a rank 3 subbundle of $\operatorname{End} T\widetilde{M}$ which satisfies the following conditions:
- For each $p\in \widetilde{M}$, there is a neighborhood U of p over which there exists a local frame field $\{\tilde{I}_1,\tilde{I}_2,\tilde{I}_3\}$ of \tilde{Q} satisfying

۲

 $egin{array}{lll} ilde{I}_1^2 = -1, \; ilde{I}_2^2 = ilde{I}_3^2 = 1, \;\;\; ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = - ilde{I}_3, \;\;\; \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \;\;\; ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = - ilde{I}_2. \end{split}$

۲

• For any element $L \in \tilde{Q}_p$, \tilde{g}_p is invariant by L, i.e., $\tilde{g}_p(LX, Y) + \tilde{g}_p(X, LY) = 0$ for $X, Y \in T_p\widetilde{M}$, $p \in \widetilde{M}$.

۲

 $egin{array}{lll} ilde{I}_1^2 = -1, \ ilde{I}_2^2 = ilde{I}_3^2 = 1, & ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = - ilde{I}_3, \ ilde{I}_2 ilde{I}_3 = - ilde{I}_3 ilde{I}_2 = ilde{I}_1, & ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = - ilde{I}_2. \end{array}$

- For any element $L \in \tilde{Q}_p$, \tilde{g}_p is invariant by L, i.e., $\tilde{g}_p(LX,Y) + \tilde{g}_p(X,LY) = 0$ for $X,Y \in T_p\widetilde{M}$, $p \in \widetilde{M}$.
- The vector bundle \tilde{Q} is parallel in $\operatorname{End} T\widetilde{M}$ with respect to the pseudo-Riemannian connection $\widetilde{\nabla}$ associated with \tilde{g} .

$$egin{aligned} ilde{I}_1^2 &= -1, \; ilde{I}_2^2 &= ilde{I}_3^2 = 1, \; \; \; ilde{I}_1 ilde{I}_2 = - ilde{I}_2 ilde{I}_1 = - ilde{I}_3, \ ilde{I}_2 ilde{I}_3 &= - ilde{I}_3 ilde{I}_2 = ilde{I}_1, \; \; \; ilde{I}_3 ilde{I}_1 = - ilde{I}_1 ilde{I}_3 = - ilde{I}_2. \end{aligned}$$

- For any element $L \in \tilde{Q}_p$, \tilde{g}_p is invariant by L, i.e., $\tilde{g}_p(LX, Y) + \tilde{g}_p(X, LY) = 0$ for $X, Y \in T_p\widetilde{M}$, $p \in \widetilde{M}$.
- The vector bundle \tilde{Q} is parallel in $\operatorname{End} TM$ with respect to the pseudo-Riemannian connection $\widetilde{\nabla}$ associated with \tilde{g} .
- Complex (1, 1)-plane Grassmannian $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ is an example of para-quaternionic Kähler manifold.

• Let $V_{1,1}(\mathbb{C}_1^{n+1})$ be the complex Stiefel manifold of orthonormal timelike and spacelike vectors (u_-, u_+) in \mathbb{C}_1^{n+1} , and

- Let $V_{1,1}(\mathbb{C}_1^{n+1})$ be the complex Stiefel manifold of orthonormal timelike and spacelike vectors (u_-, u_+) in \mathbb{C}_1^{n+1} , and
- let $\pi^G: V_{1,1}(\mathbb{C}^{n+1}_1) \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the projection defined by $(u_-, u_+) \mapsto \mathbb{C}u_- \oplus \mathbb{C}u_+$.

- Let $V_{1,1}(\mathbb{C}_1^{n+1})$ be the complex Stiefel manifold of orthonormal timelike and spacelike vectors (u_-, u_+) in \mathbb{C}_1^{n+1} , and
- let $\pi^G: V_{1,1}(\mathbb{C}^{n+1}_1) \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the projection defined by $(u_-, u_+) \mapsto \mathbb{C}u_- \oplus \mathbb{C}u_+$.
- Then tangent space $T_{\pi^G(u_-,u_+)}(\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1}))$ is identified with $\{u_-,u_+\}^{\perp} \times \{u_-,u_+\}^{\perp}$ in $\mathbb{C}_1^{n+1} \times \mathbb{C}_1^{n+1}$ through π^G_* .

• With respect to $(u_-, u_+) \in V_{1,1}(\mathbb{C}_1^{n+1})$, para-Q.K. structures I_1, I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ are given by: for $(x_1, x_2) \in \{u_-, u_+\}^{\perp} \times \{u_-, u_+\}^{\perp}$,

With respect to (u₋, u₊) ∈ V_{1,1}(ℂ₁ⁿ⁺¹), para-Q.K. structures I₁, I₂ and I₃ of of ℂ_{1,1}(ℂ₁ⁿ⁺¹) are given by: for (x₁, x₂) ∈ {u₋, u₊}[⊥] × {u₋, u₊}[⊥],
I₁: (x₁, x₂) ↦ (x₁, x₂) (-i 0 0 i) = (-ix₁, ix₂),

• With respect to $(u_-, u_+) \in V_{1,1}(\mathbb{C}_1^{n+1})$, para-Q.K. structures I_1, I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ are given by: for $(x_1, x_2) \in \{u_-, u_+\}^{\perp} \times \{u_-, u_+\}^{\perp}$, • $I_1 : (x_1, x_2) \mapsto (x_1, x_2) \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix} = (-ix_1, ix_2)$, • $I_2 : (x_1, x_2) \mapsto (x_1, x_2) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = (x_2, x_1)$,

• With respect to $(u_-, u_+) \in V_{1,1}(\mathbb{C}_1^{n+1})$, para-Q.K. structures I_1, I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ are given by: for $(x_1, x_2) \in \{u_-, u_+\}^{\perp} \times \{u_-, u_+\}^{\perp}$. ullet $I_1:(x_1,x_2)\mapsto (x_1,x_2)igg(egin{array}{cc} -i & 0 \ 0 & i \ \end{pmatrix}=(-ix_1,ix_2),$ • $I_2: (x_1, x_2) \mapsto (x_1, x_2) egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} = (x_2, x_1),$ • $I_3: (x_1,x_2)\mapsto (x_1,x_2)inom{0}{i} -i \ i = (ix_2,-ix_1).$

• With respect to $(u_-, u_+) \in V_{1,1}(\mathbb{C}_1^{n+1})$, para-Q.K. structures I_1, I_2 and I_3 of of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ are given by: for $(x_1, x_2) \in \{u_-, u_+\}^{\perp} \times \{u_-, u_+\}^{\perp}$. ullet $I_1:(x_1,x_2)\mapsto (x_1,x_2)igg(egin{array}{cc} -i & 0 \ 0 & i \ \end{pmatrix}=(-ix_1,ix_2),$ • $I_2: (x_1, x_2) \mapsto (x_1, x_2) egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} = (x_2, x_1),$ • $I_3: (x_1,x_2)\mapsto (x_1,x_2)inom{0}{i} -i \ i = (ix_2,-ix_1).$ • Then we have $I_1^2 = -1$ and $I_2^2 = I_3^2 = 1$.

• Let M^{2n-1} be a real hypersurface in \mathbb{CH}^n and

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M \to \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M o \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| > 2$ (resp. $0 \le |\mu| < 2$).

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| > 2$ (resp. $0 \le |\mu| < 2$).
- Then g(M) is a real (2n-2)-dimensional submanifold of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and

• There exist sections $\tilde{I}_{\tilde{1}}$, $\tilde{I}_{\tilde{2}}$ and \tilde{I}_{3} of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- There exist sections $\tilde{I}_{\tilde{1}}$, $\tilde{I}_{\tilde{2}}$ and \tilde{I}_{3} of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

- There exist sections $\tilde{I}_{\tilde{1}}$, $\tilde{I}_{\tilde{2}}$ and \tilde{I}_{3} of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

$$(ilde{I}_{ ilde{1}})^2 = -1$$
 (resp. $(ilde{I}_{ ilde{1}})^2 = 1$),
 $(ilde{I}_{ ilde{2}})^2 = 1$ (resp. $(ilde{I}_{ ilde{2}})^2 = -1$) and $(ilde{I}_{ ilde{3}})^2 = 1$,

- There exist sections $\tilde{I}_{\tilde{1}}$, $\tilde{I}_{\tilde{2}}$ and \tilde{I}_{3} of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

۲

$$(ilde{I}_{\tilde{1}})^2 = -1$$
 (resp. $(ilde{I}_{\tilde{1}})^2 = 1$),
 $(ilde{I}_{\tilde{2}})^2 = 1$ (resp. $(ilde{I}_{\tilde{2}})^2 = -1$) and $(ilde{I}_{\tilde{3}})^2 = 1$,

• such that $dg_x(T_xM)$ is invariant under \tilde{I}_1 and $\tilde{I}_2 dg_x(T_xM), \tilde{I}_3 dg_x(T_xM)$ are orthogonal to $dg_x(T_xM)$.

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{|\lambda|>1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},$$
 $q = \sum_{|\lambda|<1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\}.$

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{ert \lambda ert > 1} \dim \{ X ert \ AX = \lambda X, \ X \perp \xi \},$$
 $q = \sum_{ert \lambda ert < 1} \dim \{ X ert \ AX = \lambda X, \ X \perp \xi \}.$

• When $|\mu| > 2$, p and q are both even.

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{ert \lambda ert > 1} \dim \{ X ert \ AX = \lambda X, \ X \perp \xi \},$$
 $q = \sum_{ert \lambda ert < 1} \dim \{ X ert \ AX = \lambda X, \ X \perp \xi \}.$

- When $|\mu| > 2$, p and q are both even.
- When $0 \leq |\mu| < 2$, we have p = q.

• Furthermore if p + q = 2n - 2,

- Furthermore if p + q = 2n 2,
- ullet then the induced metric of g(M) is non-degenerate and

- Furthermore if p + q = 2n 2,
- ullet then the induced metric of g(M) is non-degenerate and
- g(M) is a pseudo-Kähler (resp. para-Kähler) submanifold of G_{1,1}(Cⁿ⁺¹).

• Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M
 ightarrow \mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ be the Gauss map.

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| = 2$.

- Let M^{2n-1} be a real hypersurface in $\mathbb{C}\mathbb{H}^n$ and
- let $g: M o \mathbb{G}_{1,1}(\mathbb{C}^{n+1}_1)$ be the Gauss map.
- Suppose M is a Hopf hypersurface with $|\mu| = 2$.
- Then g(M) is a real (2n-2)-dimensional submanifold of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$, and

• There exist sections $\tilde{I}_{ ilde{1}}$ and $\tilde{I}_{ ilde{2}}$ of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that

- There exist sections $\tilde{I}_{ ilde{1}}$ and $\tilde{I}_{ ilde{2}}$ of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

- There exist sections $\tilde{I}_{ ilde{1}}$ and $\tilde{I}_{ ilde{2}}$ of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

٥

$(\tilde{I}_{\tilde{1}})^2 = 1, \quad (\tilde{I}_{\tilde{2}})^2 = 0$

- There exist sections $\tilde{I}_{\tilde{1}}$ and $\tilde{I}_{\tilde{2}}$ of the bundle $\tilde{Q}|_{g(M)}$ of the para-quaternionic Kähler structure such that
- they are orthonormal with respect to natural inner product on $ilde{Q}_{g(p)}$ for $p\in\Sigma$ satisfying

$$(ilde{I}_{ ilde{1}})^2 = 1, \ \ (ilde{I}_{ ilde{2}})^2 = 0$$

• such that $ilde{I}_{1}dg_{x}(T_{x}M), ilde{I}_{2}dg_{x}(T_{x}M)$ are orthogonal to $dg_{x}(T_{x}M)$.

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{|\lambda|>1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},
onumber \ q = \sum_{|\lambda|<1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},$$

and

۲

• The induced metric on g(M) in $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ has signature (p,q), where

$$p = \sum_{|\lambda|>1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},
onumber \ q = \sum_{|\lambda|<1} \dim\{X|\;AX = \lambda X,\;X\perp \xi\},$$

and

۲

• satisfies $p+q \leq n-1$.

Circles in \mathbb{CH}^1 in \mathbb{CH}^n

• Each fiber of the *twistor space* \mathcal{Z}_{-} (resp. \mathcal{Z}_{+} and \mathcal{Z}_{0}) satsfying $I^{2} = -1$ (resp. $I^{2} = 1$ and $I^{2} = 0$) of $\mathbb{G}_{1,1}(\mathbb{C}_{1}^{n+1})$ is identified with hyperbolic plane H (resp. de Sitter plane S_{1}^{2} and lightcone C) in a Lie algebra $\mathfrak{su}(1,1)$, and

Circles in \mathbb{CH}^1 in \mathbb{CH}^n

- Each fiber of the *twistor space* Z_- (resp. Z_+ and Z_0) satsfying $I^2 = -1$ (resp. $I^2 = 1$ and $I^2 = 0$) of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ is identified with hyperbolic plane H (resp. de Sitter plane S_1^2 and lightcone C) in a Lie algebra $\mathfrak{su}(1,1)$, and
- for each corresponding 1-parameter subgroup $\exp(sX)$ $(X \in S)$, orbits in the complex hyperbolic line $[u_{-}, u_{+}] = \mathbb{C}\mathbb{H}^{1}$ in $\mathbb{C}\mathbb{H}^{n}$ are concentric circles (resp. equidistance curves of a geodesic and horocycles).

• From this, we may identify the *twistor space* Z_- (resp. Z_+ and Z_0) of $\mathbb{G}_{1,1}(\mathbb{C}_1^{n+1})$ and

- From this, we may identify the *twistor space* \mathcal{Z}_{-} (resp. \mathcal{Z}_{+} and \mathcal{Z}_{0}) of $\mathbb{G}_{1,1}(\mathbb{C}_{1}^{n+1})$ and
- the space of concentric circles (resp. equidistance curves of a geodesic and horocycles) in CH¹ ⊂ CHⁿ.

• Let M^{2n-1} be a Hopf hypersurface in \mathbb{CH}^n with Hopf curvature μ with $|\mu| = 2$. For each point p in M, let $\psi(p)$ be the integral curve (horocycle) of ξ through p.

- Let M²ⁿ⁻¹ be a Hopf hypersurface in CHⁿ with Hopf curvature μ with |μ| = 2. For each point p in M, let ψ(p) be the integral curve (horocycle) of ξ through p.
- Then we have a map $\psi_0: M \to \mathcal{Z}_0$, and the image $\psi_0(M)$ is a horizontal submanifold in \mathcal{Z}_0 .

- Let M²ⁿ⁻¹ be a Hopf hypersurface in CHⁿ with Hopf curvature μ with |μ| = 2. For each point p in M, let ψ(p) be the integral curve (horocycle) of ξ through p.
- Then we have a map $\psi_0: M \to \mathcal{Z}_0$, and the image $\psi_0(M)$ is a horizontal submanifold in \mathcal{Z}_0 .
- Conversely, let $E_0 = U(1, n)/U(n-1) \times U(1) \rightarrow \mathbb{Z}$ be a real line bundle over \mathbb{Z}_0 and let Σ be a horizontal submanifold of \mathbb{Z}_0 .

- Let M²ⁿ⁻¹ be a Hopf hypersurface in CHⁿ with Hopf curvature μ with |μ| = 2. For each point p in M, let ψ(p) be the integral curve (horocycle) of ξ through p.
- Then we have a map $\psi_0: M \to \mathcal{Z}_0$, and the image $\psi_0(M)$ is a horizontal submanifold in \mathcal{Z}_0 .
- Conversely, let $E_0 = U(1, n)/U(n-1) \times U(1) \rightarrow \mathbb{Z}$ be a real line bundle over \mathbb{Z}_0 and let Σ be a horizontal submanifold of \mathbb{Z}_0 .
- We denote $\psi^* E_0$ the pullback bundle of E_0 over Σ .

• We have a map $\Phi_0: \psi^* E_0 \to \mathbb{CH}^n(-4)$ such that each fiber of $\psi^* E_0 \to \Sigma$ is mapped to a horocycle in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.

- We have a map $\Phi_0: \psi^* E_0 \to \mathbb{CH}^n(-4)$ such that each fiber of $\psi^* E_0 \to \Sigma$ is mapped to a horocycle in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.
- Then on the subset U of regular points of Φ_0 , $\Phi_0(U)$ is a Hopf hypersurface in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu = \pm 2$.

- We have a map $\Phi_0: \psi^* E_0 \to \mathbb{CH}^n(-4)$ such that each fiber of $\psi^* E_0 \to \Sigma$ is mapped to a horocycle in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.
- Then on the subset U of regular points of Φ_0 , $\Phi_0(U)$ is a Hopf hypersurface in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu = \pm 2$.
- Similar results hold for Hopf hypersurfaces M^{2n-1} in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu \neq \pm 2$ and horizontal submanifolds in the twistor spaces \mathcal{Z}_{\pm} .

- We have a map $\Phi_0: \psi^* E_0 \to \mathbb{CH}^n(-4)$ such that each fiber of $\psi^* E_0 \to \Sigma$ is mapped to a horocycle in $\mathbb{CH}^1 \subset \mathbb{CH}^n$.
- Then on the subset U of regular points of Φ_0 , $\Phi_0(U)$ is a Hopf hypersurface in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu = \pm 2$.
- Similar results hold for Hopf hypersurfaces M^{2n-1} in $\mathbb{CH}^n(-4)$ with Hopf curvature $\mu \neq \pm 2$ and horizontal submanifolds in the twistor spaces \mathcal{Z}_{\pm} .
- Hence any Hopf Hypersurfaces in Cℍⁿ is treated unified way.

• Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.

- Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- Then we have a ruled submanifold (i.e., foliated by geodesics of CPⁿ) Mⁿ of CPⁿ as above.

- Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- Then we have a ruled submanifold (i.e., foliated by geodesics of CPⁿ) Mⁿ of CPⁿ as above.
- ${\, \bullet \, }$ We can see that M^n is a Lagrangian submanifold of ${\mathbb C}{\mathbb P}^n$ if and only if

- Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- Then we have a ruled submanifold (i.e., foliated by geodesics of CPⁿ) Mⁿ of CPⁿ as above.
- We can see that M^n is a Lagrangian submanifold of \mathbb{CP}^n if and only if
- Σ^{n-1} is horizontal w.r.t. twistor fibration and $\pi^G(\Sigma)$ is a submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$ satisfying

- Let Σ^{n-1} be a real (n-1)-dimensional submanifold in the twistor space \mathcal{Z} of $\mathbb{G}_2(\mathbb{C}^{n+1})$.
- Then we have a ruled submanifold (i.e., foliated by geodesics of CPⁿ) Mⁿ of CPⁿ as above.
- We can see that M^n is a Lagrangian submanifold of \mathbb{CP}^n if and only if
- Σ^{n-1} is horizontal w.r.t. twistor fibration and $\pi^G(\Sigma)$ is a submanifold of $\mathbb{G}_2(\mathbb{C}^{n+1})$ satisfying
- (i) 'totally real' w.r.t. the standard complex structure of $\mathbb{G}_2(\mathbb{C}^{n+1})$ and (ii) there exists a section \tilde{I} to $Q|_{\Sigma}$ such for each section I to $Q|_{\Sigma}$ which anticommutes with \tilde{I} , $I(T\Sigma) \perp T\Sigma$ holds.